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LETTER TO THE EDITOR 

Perfect absorbers for stationary and wavepacket scattering 

S Brouard, D M a c h  and J G Muga 
Departamenb de mica FUndamenfal Y Experimental, Universidad de La Laguna, 
Tenerife, Spain 

Received 7 March 1994 

Abstra& Complex potentials that absorb the incoming wave in a finite distance without 
refleetion or transmission are.found by a simple invesion technique, ,both for stationary and 
wavepacket scattering in one dimension. 

Collision processes in which annihilation or absorption of particles occur are often described 
by non-Hermitian potentials with'an imaginary pm. The best known complex-potential 
model is the optical model used in nuclear, atomic and molecular physics [l-31. In 
this model a Schriidinger equation with an effective complex Hamiltonian describes the 
collision only in the channel@) of interest. The effect of the complementary channels, which 
typically describe inelastic or reactive events, can, in principle, be accounted for exactly 
with the complex potential. Even though explicit formulae exist to obtain the exact effective 
Hamiltonian from the full interaction, the model is frequently used phenomenologically. 
This means that the complex potential is simply built to satisfy the physical requirement 
of fitting the experimental cross sections for the restricted processes of interest, especially 
when the number of open channels or complexity of the processes involved, in addition to 
the elastic or wl&d subspace of interest, is too large. 

The experimental detection of particles by destructive procedures, for example, by means 
of the ionization of neutral species arriving at a detector in a crossed molecular-beam 
experiment, involves, in general, a complicated chain of events in which the annihilation of 
the scattered particles at the detector is just the first step. When comparing experimentally 
measured outgoing fluxes with theoretical results, in general, little thought is given to the 
possible effect of the detailed processes taking placein the detector. Actually, the implicit 
and hardly ever stated assumption is that the detector acts as a perfect absorber without 
reflection, i.e. without interfering significantly with the arriving part of the wave, up to 
the position of the detector. A related subject is the possibility to define, and characterize 
quantum mechanical arrival times to spatially localized detectors. Again, the existence of 
a perfect absorber would clearly be a requirement  to^ ignore the details of the detector and 
use the unperturbed fluxes in a valid quantum mechanical definition of the time of arrival 
14-81. 

These are not the only subjects in which complex potentials are important. In recent 
years, wavepacket methods have found a formidable development thanks to new algorithms 
and faster computers [9]. However, one of the technical difficulties is that most of,these 
methods confine the packet to a finite sized box in coordinate space, so that for some 
applications the spurious collision with the boundary interferes with the true physical effects. 
A way out has been the use of absorbing imaginary potentials [1&13]. In this context a 
perfect absorber would be of obvious practical interest. 

0305-4470m4/120439tM$19.50 0 1994 IOP Publishing Ltd L439 



L440 Letter to the Editor 

In summary, potentials that absorb all the incoming flux in a limited spatial domain are 
of importance, both for fundamental reasons (to justify and model the connection between 
experimental scattmng data and the usual theoretical treatments that simply ignore any 
detector effects) and for practical purposes (in wavepacket scattering computations). In fact 
there is a somewhat widespread belief that the perfect absorber does not exist [14, 151, 
and that reflection and/or transmission are unavoidable. Many attempts to find it have only 
provided partial results and no potential having strictly zero transmission and reflection has 
been described up to now. In this letter we consmct perfect absorbers for stationary and 
wavepacket scattering. 

The discussion is limited to a particle of mass m moving in one spatial dimension y. and 
interacting with a complex potential U@), which is chosen to be 0 for negative coordinates, 
region I, and 00 for y > L, so that the transmission is zero. It is now convenient to divide 
the stationary Schrodinger equation with energy eigenvalue B by s I k2/(2mL2). Thus, 
using the dimensionless quantities x = y/L, E = E / S  and V = u/s,  the equation takes the 
form 

- @ ’ I +  V* = E @  (1) 
where the prime indicates the derivative with respect to x .  In region I, a stationary flux of 
incident and reflected particles at fixed energy is described by 

h(x )  = exp(ikx) + R(k)  exp(-ikx) x < 0 (2) 
where k = Ell2 is the dimensionless wavenumber. We look for the form of a complex 
potential in region II (0 e x e 1) that causes no reflection at k = b. i.e. R(b) = 0. The 
following boundary conditions are imposed on the stationary wavefunction for region II: 

h(1) = 0 (3) 
hr(0) = (4) 
*;,CO) = * K O ) .  (5) 

The first one corresponds to the infinite potential boundary at x = 1, where the derivative 
is not fixed. The last two equations are the usual matching conditions for the function and 
its derivative between regions I and II. It could seem that there are too many conditions 
for a second-order differential equation whose general solution admits only two arbitrary 
constants. However, note that the potential has not yet been specified and remains 
undetermined. Precisely, our inversion procedure consists of solving for V ( x )  in the 
stationary Schrodinger equation 

V ( x )  = E + 11.”(x)/$(x) 0 < x < 1 (6) 
by assuming a functional form for $11 able to fit the three conditions (3x5). The simplest 
is the quadratic form 11.n = azxZ + alx + m. By substituting in (3x5)  and using (2). one 
obtains 

a2= - ( I+&)  0) 
as = i b  (8) 
* = l .  (9) 

This gives the following perfect absorber at k = b: 
x < o  
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which, on the real axis, has only two singular points, one at each extreme of region I& The 
first one is a finite discontinuity and the second is associated with a simple pole and the 
infinite barrier. 

The above potential does not guarantee the absence of reflection for plane waves in a 
neighbourhood of k, say at kl = (E1)'/' = ko + Sk. Io other words, the derivative of the 
reflection coefficient dR/dklq is not necessarily,zerot. Io fact, for practical applications it 
is desirable to find potentials absorbing an entire wavepacket, and not just a stationary wave 
with fixed momentum. To this end we may impwe that, in addition to R&), dR/d& 
and higher derivatives are zero. The higher the order of vanishing derivatives, the flatter 
R(k) will be in the neighbourhood of ko, and the wider the momentum spread of the fully 
absorbed packets will be. The construction method used for the stationary case will be 
generalized in successive orders of the increment Sk corresponding to the vanishing of 
derivatives of increasing order. 

For a given potential function, two solutions of the stationary Schrijdinger equation (1) 
at energies EO and E1 (with subscripts 0 and 1, respectively) obey 

(11) 
where W(@O, $1) = @o@; -@I qh is,their Wronskian. In region I this equation is satisfied by 
the incoming plane waves eh" and fLX. The following discussion refers to region 11, but the 
subindex II is dropped out Expanding the solution r/rl as ~ o + f ( L ' ( ~ ) S k + f ' Z ' ( x ) S k 2 + .  . . , 
equation (1 1) becomes 

(Eo - ~ l ) @ O ! h  = W'(*O.o, rl-1) 

(-20 6k - Sk2)(@i + @o f'" Sk + @o f C2) &+. . .) 
- - ~ ~ ~ @ ~ + f ( ' ) ' ' S k + f ( 2 ' " S k Z + ~ . . ) - @ ~ ( @ ~ + f ( 1 ' S k + f 0 S k Z + . . . ) .  , 

(12) 
Equating terms of the same order on both sides (the zeroth-order terms lead  to a hivial 
identity) gives 

W'(@O.,, f'") = - 2kO+i 

w'(q0, f(4) = - &q,of(n-l) - q 0 f ( n - 2 )  , 

(13) 
WWO, f") = - 2korlof"' - $a' ( 1 4  

(15) 
The boundary conditions for f'"' are fixed. by expanding @I in (3H5) around ko and 
comparing terms of equal order, with the understanding that in region I there is only an 
incoming wave, 

f"'(0) = o  (16) 
.P)'(O) = i (17) 
f q l )  = o  (18) 

(19) 
Moreover, @O has to be consistent with conditions (2H.5) for EO, with R(k0) = 0. Since 
the general expressions of the function and of the derivative at x = 0 are $1 = 1 + R(kl)  
and @i(O) = ikl[l- R(kl)] ,  see equation (2); the condition of having only incoming wave 
in I amounts to assuming that for each order the corresponding derivative of R vanishes, 
as can be seen by expanding R around ko. 
t The modulus of the condition dR/&lb = 0. is not equivalent to the condition dlRl/&lx, = 0. h p~cticular, 
the potential (10) satisfies the latter, but not the former. 

f'"' (0) = f""(0) = f'"'( 1) = 0 n > 1 . 
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Next the first order is described in detail. Now a second-order inhomogeneous linear 
differential equation for the unknown function f(’) has to be solved, equation (13). If 
we again assume a quadratic form for *O the potential is fixed, as in the stationary we, 
by the boundary conditions for EO, but then there is an excess of conditions for f ( I )  
that cannot be satisfied in general. It is thus necessary to increase the degree of the 
polynomial so as to leave one indeterminate parameter in @o. By substituting the cubic 
form = b3x3 + b y 2  + btx + bo in (3H5) one obtains 

bz= -(1+iko+b3) (20) 
bl = i h  (21) 
bo = 1 (22) 

rl = 1 (23) 

Irrespective of the value of b3 it is impossible for the three roots to be equal to 1, therefore. 
the singular point at x = 1 is always regular or non-essential. 

Disregarding the vanishing condition off“)  at 1, equation (18), a solution of equation 
(13) subject to the initial conditions (16) and (17) depends parametrically on b3. It will be 
denoted as fr’(x; b). The problem of finding a perfect absorber for ka and ko+6k, having 
a vanishing first derivative of the reflection coefficient with respect to k at h, reduces to 
finding roots of fo(’)(l; 63) as a function of b3, i.e. values of the parameter that also satisfy 
the boundary condition (18). By expanding the solution ft’(x; 63) in a power series around 
x = 0 and substituting in (13), a recurrence relation for the expansion coefficients is found. 
The convergence of the series far from x = 0 is, however, too slow for actual computations. 
Also, a series solution exists around the singular point x = 1, with similar difficulties at 
small x .  By fixing its value as 0 at x = 1, it depends on b3 and on an extra parameter y 
fixing its derivative at that point. We shall call this particular solution f :”(x;  b3. y) .  b3 can 
be obtained by matching at some intermediate point xo the series around x = 0 and the one 
around x = 1, as well as their derivatives. This amounts to solvin the two homogeneous 

two unknowns b3 and y. A practical way to do so is the Levenberg-Marquardt algorithmt. 
Another option is to separate the second-order differential equation (13) into real 

and imaginary parts. These are easily converted into four coupled first-order differential 
equations that can be solved numerically by standard subroutines to provide the function 
fol)(l; b3) with initial conditions determined by (16) and (17). The zeros of this function 
can be efficiently found using Muller’s method. Once b3 has been fixed the potential is 
finally obtained in an explicit form from (6). putting E = EO and * = *o, with the rest of 
the parameters of the cubic given by (2OX22). Figures 1 and 2 show the d and imaginary 
parts of the zeroth (stationary), and Yirst-order potentials for = 1. 

Higher orders are discussed next. The second order requires one to solve the two 
coupled second-order differential equations (13) and (14) for f ( l )  and f(”. If +O is chosen 
as a polynomial, a quartic form @o = c4x4 + c3x3 + c2x2 + cIx + CO that leaves two 
(complex) parameters free, y and c3, is needed to satisfy all boundary conditions for f ( l )  
and f@). As in the first-order case, it is convenient to separate (13) and (14) into real 
and imaginary parts and then convert the resulting four second-order equations into eight 
coupled first-order equations. The solutions f(’)(l; q, y) and f(’I(1; ca. cd) with the initial 

t We have used IMSU math library. 

where. b3 is the free parameter. The three roots of the cubic equation I/ro = 0 are 

r23 = ( ~ ) - 1 [ ( 1 + i k o ) ~ ( 1 - ~ + 2 i ~ + 4 b 3 ) ’ / 2 ] .  (W 

equations ~ ~ ” ( x o ;  bd - fy’(xo;  b3, y )  = 0 and fO(l”(x0; h) - f, (15 (xo; b3, y )  = 0 for the 
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Figure 1. Real part of the wmplex potential V ( x )  for ko = 1. Full curve: zeroth- 
order quadratic $0; dotted curve: zeroth-order cubic h; bmken curve: h - o r d e r  cubic $0, 
h = 1.6383 - i4.6607. 
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Figure 2. Imaginary pad of the complex potential V ( x )  for ko = 1. Same cases as figure 1. 

conditions at x = 0 depend parametrically on c3 and c4. One is then left with the problem 
of finding zeros of the functions f(’)(l; c3, cq) and f(”(1; c3, c4). which is equivalent to 
solving a homogeneous system of nonlinear equations for the unknowns cg and c4. Again, 
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Figure 3. ReRectance, lRI2, versus k for absorbing potentials with ko = I. Full curve: 
mth-order potential. quadratic +o: bmken c w e :  firstader patenti& cubic +o, b, = 
1.6383 - i4.6607; squares: second-order potential, quartic +n, ~3 = 0.1894 - i30.3240, 
cd = 4.283 72 + i22.44531. The reflectance of the second-order potential is less than 0.01 
until k Fci 5.4. 

an efficient method is the Levenberg-Marquardt algorithm. The hi id  and higher orders can 
be handled similarly. Hgure 3 shows the progressive flattening of the reflectance lR(k)12 
for zeroth-, first- and second-order potentials. R(k)  at k # ko is computed by adapting the 
variablephase method for s waves to our one-dimensional system [16]. 

In summary, perfect absorbers in a finite spatial range exist, and a method of construction 
has been described. Explicit functional forms have been obtained. The non-uniqueness of 
these potentials should be emphasized. Different functional forms can be proposed for @O 

to fit particular needs. As an example, in the stationary case the decay to --CO can be 
avoided by using a cubic form instead of a quadratic one, and imposing the extra condition 
@{(I) = 0, see figures 1 and 2. The polynomials chosen here appear as a simple and 
easily tractable choice. Also, for a given functional form of @o there can be more than one 
set of parameters that solve the coupled differential equations with the required boundary 
conditions, and therefore more than one potential. In forthcoming publications further 
analysis of these potentials will be carried out. 
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